Enrollment No: _____ Exam Seat No: _____ C.U.SHAH UNIVERSITY **Summer Examination-2017**

Subject Name : Computer Oriented Mathematical Reasoning Subject Code : 4CS02IMR1 **Branch : B.Sc.IT**

	Semester Instructio		Time : 02:00 To 05:	00 Marks :70)
	(1) 1 (2) 1 (3) 1	Use of Programmable calculator & Instructions written on main answe Draw neat diagrams and figures (if Assume suitable data if needed.	er book are strictly to be obey	1	
Q-1	a)	Attempt the following question If $y = x^3 - x^2 + 1$, then $\Delta^3 y =$			(14) (1)
	b)	The n^{th} order difference of the n	t th degree polynomial is		(1)
	c)	Δx^{n+1} is equal to			(1)
		a) nx^{n-1} b) nx^n	c) <i>n</i> !	None of these	
	d)	Write the relation between <i>E</i> and	$I \nabla$.		(1)
	e)	Prove that $\Delta \nabla = \Delta - \nabla$.			(1)
	f)	Prove that $: \nabla = 1 - e^{-hD}$			(1)
	g)	The equation which remains unto out is called	ouched when elementary ope	rations are carried	(1)
	h)	What is the full name of LCM ?			(1)
	i)	The Gauss-jordan method is an _	method.		(1)
		a) direct	(b) iterative	(c) none of these	
	j)	How many method are available problem?	to find initial solution of tran	nsportation	(1)
	k)	Write Lagrange's interpolation for	ormula.		(2)
	l)	Using backward difference, find	the formula for $\frac{dy}{dx}$ at $x = x_0$		(2)
Atte	emnt anv f	four questions from 0-2 to 0-8			

Attempt any four questions from Q-2 to Q-8

Q-2		Attempt all questions	(14)
	a)	Using Gauss Jordan method solve the system of equations:	(07)
		x + 4y - z = -5; x + y - 6z = -12; x - y - z = 4	

b)	Apply Gauss elimination method to solve the given equations:	(07)
	x + y + z = 9; 2x - 3y + 4z = 1; 3x + 4y + 5z = 4	

Page 1 || 3

a)	Apply Lagree $f(3) = 8, f(3)$				and $f(6)$	given th	at f(1) =	= 2, f(2) = 4,
b)	Construct M	Newton's fo	orward i	nterpolatio	n polync	mial for	the follo	wing data:
	x		4		б	8	3	10
	y		1		3	8	3	16
4	Attempt a	l question	s					
a)	Apply New	ton's back	ward d	ifference f	ormula t	the dat	a below t	o obtain a
	polynomial	of degree	4 in the	argument:				
	x	1		2	3		4	5
	y	1		-1	1		-1	1
	Attempt al			nce table fr	om the f	ollowing	g values o	of x and y :
a)	x	0	5	10	1		20 24	25
b)		$0 \\ 7$ wing system 2x + y	5 11 m of equ $+ z = 1$	10 14	g Gauss	8 Eliminat	24 ion meth	25 32 od:
b) 6	x y Solve follo Attempt al	0 7 wing system $2x + y$ I question	5 11 m of equ $+ z = 1$ s	10 14 1ation usin $x + 2y + 2$	g Gauss	8 Eliminat	24 ion meth	25 32 od:
	x y Solve follo Attempt al Find the m	0 7 wing system $2x + y$ I question assing term	5 11 m of equ $+ z = 1$ s in the ta	10 14 nation usin ; x + 2y + able:	$\begin{array}{c} 1 \\ g \text{ Gauss} \\ 3z = 4 \end{array}$	8 Eliminat x + 3y	24 ion meth	25 32 od:
b) 6	x y Solve follo Attempt al	0 7 wing system $2x + y$ I question assing term 2	5 11 m of equ $+ z = 1$ s in the ta 3	10 14 1ation usin ; x + 2y + able: 4	g Gauss	8 Eliminat x + 3y 6	24 ion meth + $4z = 0$	25 32 od:
b)	x y Solve follo Attempt al Find the m	0 7 wing system $2x + y$ I question assing term	5 11 m of equ $+ z = 1$ s in the ta	10 14 nation usin ; x + 2y + able:	$\begin{array}{c} 1 \\ g \text{ Gauss} \\ 3z = 4 \end{array}$	8 Eliminat x + 3y 6	24 ion meth	25 32 od:
b)	x y Solve follo Attempt al Find the mi x y	0 7 wing system $2x + y$ I question assing term 2 45.0 the initial s	5 11 m of equ $+ z = 1$ s in the ta 3 49.2 solution	10 14 1ation usin ; x + 2y + able: 4 54.1 to the follow	$ \begin{array}{c} 1 \\ g \text{ Gauss} \\ 3z = 4 \end{array} $	8 Eliminat x + 3y 6 6	24 ion meth $+ 4z = 0$ 7.4 ion probl	25 32 od:

	D_1	D_2	D_3	supply
S_1	4	8	8	66
<i>S</i> ₂	16	24	16	82
<i>S</i> ₃	8	16	24	67
Demand	72	102	41	

Q-7 Attempt all questions a) Form the table of backy

Form the table of backward differences of the function $f(x) = x^3 - 3x^2 - 5x - 7 \text{ for } x = -1, 0, 1, 2, 3, 4, 5.$ (07)

(14)

Page 2 || 3

b) Determine the initial solution to the following transportation problem by using (07) Least Cost Method.

Plant		Supply			
Flain	D_1	D_2	D_3	D_4	Supply
P_1	1	3	1	4	30
<i>P</i> ₂	3	3	2	1	50
<i>P</i> ₃	4	2	5	9	20
Demand	20	40	30	10	100
all question					

Q-8 Attempt all questions

a) Determine the interpolating of degree three using Lagrange's interpolation formula

x	0	1	3	4
У	-12	0	12	24

b) Construct a forward difference table from the following values *x* and *y*.

x	35	36	37	38	39	40	41
у	4.298	4.144	3.986	3.825	3.661	3.495	3.228

(07)

(14)

(07)

Page 3 || 3

